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Oded Stark *

On the Evolution

of Altruism

An example is provided to illustrate how evol-
ution can select for altruism. It is shown that
evolution can sustain altruistic behavior
between relatives even in a single-shot priso-
ner’s dilemma model in which altruism bene-
fits one’s opponent at a cost to oneself, and
conditions are derived under which altruism
persists and flourishes to the extent that the
entire population will consist of altruists. The
case presented is of interest also because it il-
lustrates how the distribution of a population
by a trait is an outcome solely of the relative
payoff to the trait in intrafamilial exchanges.

The game and the payoffs

Consider the following two-player, two-stra-
tegy game in which a player who cooperates
gets a payoff of Rif his opponent cooperates,
and S if the opponent defects. A player who
defects gets T if his opponent cooperates,
and P if the opponent defects. In a prisoner’s
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dilemma game, S<P<R<T; so that defection
is a dominant strategy for each player.

We equate altruism with cooperating in a
prisoner’s dilemma game. To see this suppose
the column player selects C.

Column Player

| C D
C RR ST
Row Player D TS PP

If the row player selects C rather than D, he
gives up 7'to receive the smaller R, whereas the
column player gains since he receives R, which
is larger than S. Suppose, alternatively, that the
column player selects D. Again, if the row
player selects C rather than D, his payoff de-
clines (by P-S), while the column player’s pay-
off rises (by 7-P). This is what altruism is
about: giving up something for the sake of
another. Thus, throughout the rest of this
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paper we identify altruism with playing coope-
rate in the one-shot prisoner’s dilemma game.!

The rule of imitation

An individual’s strategy, to play C or D
against one’s sibling, is determined by imita-
ting the behavior of parents or nonparents.
Note that strategy here stands for a program-
med pattern of behavior, not an object of
choice. Assume that with probability »a child
randomly selects one parent as a role model
and adopts that parent’s strategy. With proba-
bility 1-» the child chooses a random nonpa-
rent as a role model. Each individual has a sib-
ling with whom the individual plays a game of
prisoner’s dilemma. The probability that an
individual survives to reproduce is proportio-
nal to the payoff in this game. For example,
consider a case in which the payoff positively
influences the probability of reaching maturi-
ty and of being able to procreate.

The formation of couples
Assume that mating is monogamous. Parent-

couples can be one of three possible types:
two-cooperator couples, “mixed couples”
with one cooperator and one defector, and
two-defector couples. Let x be the fraction of
cooperators in the adult population. If marri-
age is purely random, the fraction of marria-
ges with two cooperators is x-x= x?, the frac-
tion with two defectors is (1—x)(1—-x) = (1—x)?,
and the fraction with mixed couples is
2x(1-x). If marriage is purely (positively)
assortative, the fractions of cooperators and
defectors are, respectively, x and
To allow mating patterns that are inter-
mediate between the polar cases of purely
random mating and purely assortative

1—x.

mating, we define a parameter m where
0<m<1, such that when mating is purely
random m=0, and when mating is purely
assortative m=1. In the population ar large,
the proportion of two-cooperator couples is
thus x?+mx(1—x); the proportion of two-
defector couples is (1-x)? + mx(1-x); and the
remaining proportion of mixed couples is
2(1-m)x(1-x).2

1. Consider the following quite gencral formulation: U(C,, C) = (1—a)V(C) + aV(C,) where Uis agent 1’s
utility, C, is consumption of agent i, #=1,2, 0<0<1 is the weight that agent 1 places on the felicity of agent 2
relative to his own felicity, and V; is the direct pleasure of agent i from consumption (fclncn’y) Suppose the
total supply of the consumption good is fixed at C, + C, = C, and that initially all this quantity is in the hands
of agent 1. Take the case VA(C) = In (C). Agent 1 maximizes his utility. This requires that

U(C,C) 1-a @

- oC, ¢ CcC

! !

C
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we see that altruism entails agent 1 giving up some consumption for the sake of agent 2 receiving more

. 2 . . . oy . .
consumption (as long as o >0, C >0 which is equivalent to C, < C), and that a stronger altruism results in a
!

larger transfer. Thus, the nature of altruism is giving up some for the sake of another receiving more.

2. The matching process can be characterized in the following way. Interpret m as the fraction of each of the two
types who systematically marry members of their own type, and interpret 1—~m as the fraction of each of the two
types who marry randomly (that is, independently of type). We refer to cooperators as type Cand to defectors
as type D. Thus, a fraction mx of the population are individuals of type Cwho systematically marry individu-
als of type C, whereas a fraction m(1-x) of the population are individuals of type D who systematically marry
individuals of type D. Of the 1-m who marry randomly, x? are of type CCand (1-x)? are of type DD. There-
fore, the total fraction of marriages that are of type CCis mx + (1-m)x?=x? + mx(1-x) , and the total fraction

of marriages that are of type DD is m(1-x) + (1-m)(1-x)? =
—x) are of type CD and of the fraction 1-m of type D who marry randomly,

type Cwho marry randomly, x(1

(1—x)? + mx(1-x). Finally, of the fraction 1-m of

(1-x)x are of type CD. Therefore, the total fraction of marriages that are of type CD is (1-m) x(1-x)+

(1-m)(1-x)x = 2(1-m)x (1-x).
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The outcome
Given the assumptions about the rule of imi-
tation and the formation of couples, what
happens to the share of cooperators in the po-
pulation, x? We specify a case where the uni-
que and stable equilibrium is one in which the
entire population will consist of cooperators.?
For this monomorphic outcome to occur, two
conditions must be satisfied. First, that a po-
pulation of defectors would be “invaded” by
cooperators. Second, that a population of co-
operators could not be “invaded” by defectors.
The proportion of cooperators in the po-
pulation will increase or decrease depending
on whether the average payoff to cooperators
is higher or lower than that of defectors. If
defectors were as likely as cooperators to have
cooperative siblings, then defectors would get
higher expected payoffs than cooperators.
However, siblings are more likely to be
similar than random pairs of individuals.

Claim 1: As the proportion of one type in
the population becomes rare, the
probability that an individual of the
rare type is married to an individu-
al of the rare type approaches m.

Proof:  Consider, for example, the case of
rare cooperators. If an individual is
a married cooperator, what is the
probability that he will be married
to a cooperator, when cooperators
are rare in a population consisting
of, say, N couples? This conditional
probability is the total number of

cooperators married to coopera-
tors, divided by the total number of

cooperators who are married at all,
that is:

2[xt+mx(1-]N
2[4+ mx(1-x) | N+2(1—m) x(1-x) N

=X+m—mx,

which, when x — 0, is equal to m. O

Thus, when cooperators are rare, the proba-
bility of a cooperator-cooperator match is m.

When the proportion of one type in the
population approaches zero, what is the pro-
bability that an individual of the rare type has
a sibling of the rare type?

Claim 2: The probability that an individual
of the rare type has a sibling of the
rare type approaches (1+m)v?/2.

Proof: ~ When cooperators are rare, a child
can be a cooperator only if the
child imitates a parent, provided
the parent is a cooperator. (Clearly,
if the child imitates a nonparent,
the child most surely will be a
defector.) In order for both a child
and his sibling to be cooperators,
both children need to imitate either
parent when both parents are co-
operators, and the cooperating pa-
rent when one parent is a coopera-
tor and one is a defector. The pro-
bability of the first of these events is
mv % the probability of the second
event is (1-m)v?/2.* The proba-
bility then that a cooperating child
will have a cooperating sibling is
mo2+(1=m)v? 2= (1+m)v?/2.0°

3. By “stable equilibrium” we mean an equilibrium that is dynamically stable. This should not be confused with
the notion of Nash equilibrium in “evolutionary stable strategies” discussed in evolutionary game theory.

4. The probability that “both children are cooperators” is equal to the probability that “both children imitate a
parent M the parent is a cooperator.” This probability is equal to v%1 when both parents are cooperators — which
in turn occurs with probability 7, and to v%2 when one parent is a cooperator and the other parent is a

defector — which in turn occurs with probability 1-m.

5. Equations (1) through (9) in the appendix provide an alternative proof of Claim 2.
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Claim 3: When cooperators are rare, the
difference between the expected
payoff of a rare cooperator and that
of a normal defector (that is, a de-
fector child born to a two-defector
couple) is
B=(1+m)(v? ] 2)(R-S) — (P-5).

Proof: = When cooperators are rare, the

expected payoff to a cooperator

from the game played with a

sibling is determined by the proba-

bility that the cooperator has a

cooperator  sibling, which s

(1+m)v? /2, by the probability that

the cooperator has a defector sib-

ling, which is [1-(1+m)v? /2], and
by the respective payoffs. The
expected payoft is therefore

(1+m) (v?12) R+[1-(1+m)v?/2] 8.

When cooperators are rare, the

expected payoff to a normal

defector from the game the de-
fector plays with a sibling is P°

The difference between the expec-

ted payoff of a rare cooperator and

Q+m (212 R [1—(1+m)v? [2)5-P =
(1+m)(v? 12)(R-S) — (P-$)=. O

A similar procedure shows that when defec-
tors are rare, the difference between the
expected payoff of a cooperator and the
expected payoff of a defector is
o=(1+m)(v¥2)(T-P) — (T-R).

Claim 4: When 8 and « are both positive,
the population will consist entirely

of cooperators.”

We cannot, of course, say that 8 and & must
be positive. But we can find prisoner’s dilem-
ma games with payoff parameters SRR T
such that both 850 and a>0.8

Explaining the outcome

The likelihood that cooperative behavior will
prevail depends on (1+m)v%/2. If children are
likely to imitate their parents rather than a
random role model, v is high; and parents are
likely to be cooperators when m is high. The
higher is (1+m)v?%/2, the greater the set of
payoff parameters for which both fand o are

positive, in which case the population will

that of a normal defector is consist of cooperators only. That is, the

6. We ignore the possible case in which a defector child interacts with a cooperator sibling because when coope-

rators are rare, that is, x—0, the conditional probability that a sibling of a child of type D s of type C, which is
(1-#)x where k=(1+m)v?/2, approaches zero. Conversely, when cooperators are rare, the conditional probabi-
lity that a sibling of a child of type D is of type D, which is #+(1-x), approaches 1. (These conditional proba-
bilities are derived in the appendix.)

The assumption that a small group of cooperators will continue to grow when it has already gotten bigger and
will, in the end, take over the entire population requires examination of intermediate cases, that 1s, of cases ot-
her than the ones in which cooperators are rare (x—0) or defectors are rare (x—1). However, when the structu-
re of the model is linear in such a way that we can infer about the intermediate cases from the extreme cases, a
study of the intermediate cases is not necessary. A proof that this applies in the case of the current model is pro-
vided in the appendix. (An alternative proof is provided in Stark (1995), chapter 6.) In the appendix we show
that the model has a simple linear structure: the difference between the expected payoff to a cooperator child
from interacting with a sibling and the expected payoff to a defector child from interacting with a sibling is
ax+B(1-x). This expression is positive for any x (that is, not only for x—0 or x—1) if and only if & and B are
both positive.

Note that (1+7)2%/2 lies in the closed interval [0,1]. It is an increasing function of both 7 and v. We have
(1+m)v%2=0 if and only if v=0, and (1+m)»%2=1 if and only if m=v=1. We have that >0 if and only if
(14m)2?2>(P-S8)/(R-S)=F , and that >0 if and only if (1+7)v*/2>(T-R)/(T-P)=k, The numbers £,and £,
lie strictly between zero and 1 since S<P<R<T.
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greater is (1+m)v?/2, the more likely it is that
cooperative behavior will prevail. In particu-
lar, in the extreme case m=v=1, we get B=a-=
R-P>0 and the population will consist of only
cooperators for any set of payoff parameters.
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Appendix
Denote the fractions of marriages that are of the three
types, that is, two cooperators, cooperator-defector, and
t—;\}'lo defectors, by, respectively, ¥ ., Y, and ¥,

en,

(1) Y= x%+mx (1-x),
2 Y= 2(1-mx (1),
(3) Ypp= (1=x)4mx (1-x).

The probabilities that a child in a marriage of each type
is of type C are

4) .= (1-v)x+,
(5) 5CD= (1—v)x+12},
6) 8,,=(1-1)x

Assuming that the number of children on average is the
same in all types of marriages, the total fraction of chil-
dren who are of type Cis

7 A=Y b+ YepOcp* Yoo Opp = %7

Given that a child is of type C, denote by £, £, and
£, the conditional probabilities that the martiage into
which the child was born is of a particular type.

Thus,

- ’YCC(SCC‘

®) £oc=-

Similar equations can be written for £, and €.
For a given pair of siblings, G and H, the conditional
probability that His of type Cgiven that Gis of type C

is
9 Alxm,uv)= chécc" Yo 5CD+ YDD5DD = (1+m)v4/2
x-+0

or, for any arbitrary value of x,

(10) AQGemv)= x+(1-x) b=k+(1-k)x
where k=(1+m)v?/ 2.

Therefore, the conditional probability that a sibling of
a child of type Cis of type Dis

(11) 1-[A+(1-A)x] = (1-A(1-x).

The conditional probability that a sibling of a child of
type Dis of type D is given simply by substituting 1-x
for xin (10). We thus get,

(12) A+(1-A(1-x)

and similarly, the conditional probability that a sibling
of a child of type Dis of type Cis given by substituting
xfor 1-xin (11). We thus get,

(13) 1-Ax.

(We can also derive this last probability from (12) by
writing 1-[£+(1-£)(1-x)] = (1-A)x.)

Hence, when x —0, the conditional probabilities (12)
and (13) approach, respectively, 1 and zero.

For the general case (any arbitrary value of x), by using
(10) and (11) we calculate first the expected payoff of a
child of type C from interacting with a sibling. This
payoff is [£+(1-£)x} R +(1-£)(1-x) S. Next, by using (12)
and (13) we calculate the expected payoff of a child of
type D from interacting with a sibling. This payoff is
[+(1=B(1-)1 P+(1—k)xT. Therefore, the difference
between these two numbers is

(14) x[R-[£P+(1-R T1] + 1-X)[[£R + (1-R)S]- P) =
xo + (1-%)

where ot and B are defined in the last but one section of
the paper. The expression 0x +f(1-x) is positive for any
xif and only if & and B are both positive. In Claim 4 we
take x — 0, in which case (14) reduces to
kR+(1-F)S=P= (1+m)(v¥2) R+ (1-(1+m)v? /2] S-P.

9. Exploiting the similarity between the Js, this result can be obtained as follows:
Yee + Yept Yop= 224 2mx(1=x) +2(1=m) x(1-x) +{1=x)?= x 2+ 2x(1-x) +(1-x)*=1, and

Yo +% Yop= ¥ +x{1-x)=x. Thus,

A=Y O + YepOrn* YopOpp = Yec (=) x+2)+7 ((1—v)x+12’)+‘YDD(l—v)x

=(Yoe+ Yep + Yo ) (1-0)x+ (Y + %‘YCD)D=(1—v)x+xu=x.





